T ™

JE LD

Ny
=:!‘::..'|
Computmg Sciences Summer StudSNe) = Rebecca Hartman-Baker
ngram Tra1mng2020 al User Engagement Group Lead
D — ‘ gt T e June 17, 2020

o ke ,, ,——‘ I

“'/ e -

Course Outline

Parallelism & MPI (10 am - noon)

|. Parallelism
Il. Supercomputer Architecture
Ill. Basic MPI

(Interlude 1: Computing Pi in parallel)

1I\/. MPI Collectives

(Interlude 2: Computing Pi using parallel collectives)

OpenMP & Hybrid Programming (1 - 3 pm)

Office of
Science

%l BERKELEY LAB
Bringing Science Solutions to the World

Course Outline

Parallelism & MPI (10 am - noon)

OpenMP & Hybrid Programming (1 - 3 pm)
I. About OpenMP

Il. OpenMP Directives

Ill. Data Scope

V. Runtime Library Routines & Environment
V. Using OpenMP

(Interlude 3: Computing Pi with OpenMP)

VI. Hybrid Programming
(Interlude 4: Computing Pi with Hybrid Programming)

Parallelism & MPI

is*’sc =1 BERKELEY LAB ENERGY | e

p——

|. PARALLELISM

“Parallel Worlds” by aloshbennett from
http://www.flickr.com/photos/aloshbennett/3209564747/sizes/l/in/photostream/

:

U.S. DEPARTMENT OF Ofﬂce Of

BERKELEY LAB ENERGY | science

Bringing Science Solutions to the World

http://www.flickr.com/photos/aloshbennett/3209564747/sizes/l/in/photostream/

|. Parallelism

e Concepts of parallelization
e Serial vs. parallel
e Parallelization strategies

Office of
Science

i BERKELEY LAB

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Parallelization Concepts

e When performing task, some subtasks depend on one
another, while others do not
e Example: Preparing dinner

o Salad prep independent of lasagna baking
o Lasagna must be assembled before baking

e Likewise, in solving scientific problems, some tasks
independent of one another

Office of

33/‘“/—'4‘\«‘ U.S. DEPARTMENT OF
@@ ENERGY scionce

%] BERKELEY LAB
Bringing Science Solutions to the World

Serial vs. Parallel

e Serial: tasks must be performed in sequence
e Parallel: tasks can be performed independently in any
order

£ ‘\«‘ EEEEEEEEEEEEEE Offl ce Of

i ENERGY Science

i BERKELEY LAB

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Serial vs. Parallel: Example

e Preparing lasagna dinner

e Serial tasks: making sauce, assembling
lasagna, baking lasagna; washing lettuce,
cutting vegetables, assembling salad

e Parallel tasks: making lasagna, making salad,
setting table

Office of
Science

Serial vs. Parallel: Graph

Wash veg

| Spread
| <

| Bake
K L
u Garlic Bread

Serve Dinner

4:15 4:30 5:00

: 5:30 6:00
- 0 Office of
< 10 '}”ml BERKELEY LAB Science
Bringing Science Solutions to the World

Serial vs. Parallel: Graph

Wash veg

|
1
|
)

REET

|

|Synchronization Points e A',
—_— Serve Dinner

Bake

2

Garlic Bread

4:15 4:30 5:00 5:30

n

6:00

2R, U.S. DEPARTMENT OF

Office of
Science

Serial vs. Parallel: Graph

4:15 4:30 5:00

 NERSC | 12

5:30

&l BERKELEY LAB “
Bringing Science Solutions to the World

6:00

Serial vs. Parallel: Example

e Could have several chefs,
each performing one parallel
task

e This is concept behind parallel
computing

Office of

eeeeee

*

Discussion: Jigsaw Puzzle

e Suppose we want to do a large,
N-piece jigsaw puzzle (e.g., N =
10,000 pieces)

e Time for one person to complete
puzzle: T hours

e How can we decrease walltime to
completion?

Office of
Science

Discussion: Jigsaw Puzzle

e Impact of having multiple people at the table
o Walltime to completion
o Communication
o Resource contention

e Let number of people =p
o Think about what happens whenp = 1, 2, 4, ... 5000

NERSC 15 & BERKELEY LAB
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Discussion: Jigsaw Puzzle

Alternate setup: p people, each at separate table with N/p
pieces each

e What is the impact on
o Walltime to completion
o Communication
o Resource contention?

(R Office of
NS R 16 2l BERKELEY LAB ,‘\ ENERG Y | Science
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Discussion: Jigsaw Puzzle

Alternate setup: divide puzzle by features, each person
works on one, e.g., mountain, sky, stream, tree, meadow, etc.

e What is the impact on
o Walltime to completion
o Communication
o Resource contention?

e“‘\«‘ EEEEEEEEEEEEEE offlce Of

i / ENERGY Science

i BERKELEY LAB

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Parallel Algorithm Design: PCAM

e PFartition: Decompose problem into fine-grained tasks to
maximize potential parallelism

e Communication: Determine communication pattern
among tasks

e Agglomeration: Combine into coarser-grained tasks, if
necessary, to reduce communication requirements or
other costs

e Mapping: Assign tasks to processors, subject to tradeoff
between communication cost and concurrency

(from Heath: Parallel Numerical Algorithms)

\»‘/‘\‘«,‘ EEEEEEEEEEEEEE Ofﬂce Of

'Z / ENERGY Science

%] BERKELEY LAB
Bringing Science Solutions to the World

II. ARCHITECTURE

“Architecture” by marie-ll, http://www.flickr.com/photos/qgrrrl/324473920/sizes/|/in/photostream/

Office of

fwwﬁ‘t U.S. DEPARTMENT OF
@Y ENERGY science

http://www.flickr.com/photos/grrrl/324473920/sizes/l/in/photostream/

Il. Supercomputer Architecture

e What is a supercomputer?
e Conceptual overview of architecture

IBM Blue
Gene
(2005)

Architecture of IBM Blue Gene

A
)
A

g
|

TTYYYYYYNY

System

— 64 cabinets
~11mm Cabinet 65,536 nodes
e 2 midpianes (131,072 CPUs)

= ' Node Card 1024 nodes (32x32x64)
‘ ' 16 compute cards (2,048 CPUs) 1801360 TFis
0-2 1/0 cards (8x8x16) 131; m
e Chip 32 nodes 2.9/5.7 TFls SJamw.
FRU (field (64 CPUs) 512 GiB* DDR 500 sq.
ggosceesss:/r: replaceable unit) (4x4x2) 15-20 kW MTBF 6.16 Days
4 MiB* eDRAM 25mmx32mm 90/180 GF/s

_ 2 nodes (4 CPUs) 16 GiB* DDR

(compare this with a 1988 (2x1x1)
Cray YMP/8 8t 2.7 GF/s) 2x(2.8/5.6) GF/s
2x512 MiB* DDR
15W

U.S. DEPARTMENT OF

ENERGY

il BERKELEY LAB

Bringing Science Solutions to the World

20

Office of
Science

What Is a Supercomputer?

e “The biggest, fastest computer right this minute.”
— Henry Neeman

e Generally at least 100 times more powerful than PC

e This field of study known as supercomputing,
high-performance computing (HPC), or scientific
computing

e Scientists use really big computers to solve really hard
problems

%] BERKELEY LAB ‘7
Bringing Science Solutions to the World

SMP Architecture

e Massive memory, shared by multiple processors

e Any processor can work on any task, no matter its
location in memory

e l|deal for parallelization of sums, loops, etc.

0 BERKELEY LAB & ENERGY oreor

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Cluster Architecture

e CPUs on racks, do computations (fast)

e Communicate through networked connections (slow)

e Want to write programs that divide computations evenly
but minimize communication

> ‘\«‘ EEEEEEEEEEEEEE Offl ce Of

i) g ENERGY Science

i BERKELEY LAB

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

23

State-of-the-Art Architectures

e Today, hybrid architectures pervasive

(@)

Multiple {8, 12, 16, 24, 32, 68}-core nodes, connected to other
nodes by (slow) interconnect

Cores in node share memory (like small SMP machines)
Machine appears to follow cluster architecture (with multi-core
nodes rather than single processors)

To take advantage of all parallelism, use MPI (cluster) and
OpenMP (SMP) hybrid programming

o4 22| BERKELEY LAB
Bringing Science Solutions to the World

State-of-the-Art Architectures

e Hybrid CPU/GPGPU architectures broadly accepted
o Nodes consist of one (or more) multicore CPU + one (or more)
GPU
o Heavy computations offloaded to GPGPUs
o Separate memory for CPU and GPU
o Complicated programming paradigm, outside the scope of
today’s training

NERSC o5 B BERKELEY LAB
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

IIl. BASIC MPI

“‘MPI Adventure” by Stefan Jurgensen, from
http://www.flickr.com/photos/94039982@N00/6177616380/sizes/|/in/photostream/

U.S. DEPARTMENT OF Offlce of

EN ERGY Science

22| BERKELEY LAB

Bringing Science Solutions to the World

http://www.flickr.com/photos/94039982@N00/6177616380/sizes/l/in/photostream/

lll. Basic MPI

Introduction to MPI

Parallel programming concepts
The Six Necessary MPl Commands
Example program

£ ‘\«‘ EEEEEEEEEEEEEE Offl ce Of

i ENERGY Science

i BERKELEY LAB

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Introduction to MPI

e Stands for Message Passing Interface

e Industry standard for parallel programming (200+ page
document)

e MPI implemented by many vendors; open source

Implementations available too

o Cray, IBM, HPE vendor implementations
o MPICH, LAM-MPI, OpenMPI (open source)

e MPI function library is used in writing C, C++, or Fortran
programs in HPC

Office of

f"‘»%"t U.S. DEPARTMENT OF
@Y ENERGY science

%] BERKELEY LAB
Bringing Science Solutions to the World

Introduction to MPI

e MPI-1 vs. MPI-2: MPI-2 has additional advanced
functionality and C++ bindings, but everything learned in
this section applies to both standards

e MPI-3: Major revisions (e.g., nonblocking collectives,
extensions to one-sided operations), released September
2012, 800+ pages

o MPI-3.1 released June 2015
o MPI-3 additions to standard will not be covered today

e MPI-4: Standard currently in development

3 - {*f‘*\«T U.S. DEPARTMENT OF Office of
NER 29 2] BERKELEY LAB @ ENERGY scionce
Bringing Science Solutions to the World

Parallelization Concepts

e Two primary programming paradigms:
o SPMD (single program, multiple data)
o MPMD (multiple programs, multiple data)

e MPI can be used for either paradigm

NERSC 30 & BERKELEY LAB
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

SPMD vs. MPMD

e SPMD: Write single program that will perform same

operation on multiple sets of data
o Multiple chefs baking many lasagnas
o Rendering different frames of movie

e MPMD: Write different programs to perform different

operations on multiple sets of data
o Multiple chefs preparing four-course dinner
o Rendering different parts of movie frame

e (Can also write hybrid program in which some processes
perform same task

NERSC 31 2l BERKELEY LAB

Office of

fwmﬁ’t U.S. DEPARTMENT OF
@Y ENERGY science

he Six Necessary MP| Commands

int MPI Init(int *argc, char **argv)

int MPI Finalize (void)

int MPI Comm size (MPI Comm comm, int *size)
int MPI Comm rank (MPI Comm comm, int *rank)

int MPI Send(void *buf, int count, MPI Datatype
datatype, int dest, int tag, MPI Comm comm)

int MPI Recv(void *buf, int count, MPI Datatype

datatype, int source, int tag, MPI Comm comm,

MPI Status *status)

NER 32 @il BERKELEY LAB ©

£ERY, U-S. DEPARTMEN

Office of

EN ERGY Science

Initiation and Termination

e MPI Init(int *argc, char **argv) initiates MPI
o Place in body of code after variable declarations and before any
MP| commands
e MPI Finalize (void) shuts down MPI
> Place near end of code, after last MPl command

NERSC 33 B BERKELEY LAB
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Environmental Inquiry

¢ MPI Comm size (MPI Comm comm, int *size)
o Find out number of processes
o Allows flexibility in number of processes used in program
¢ MPI Comm rank (MPI Comm comm, int *rank)
o Find out identifier of current process
o 0 £ rank £ size-1

Office of
Science

NER 34 e BERKELEY LAB

s to the World

Message Passing: Send

¢ MPI Send(void *buf, int count,

MPI Datatype datatype, int dest, int tag,
MPI Comm comm)

o Send message of length count items and datatype datatype

contained in buf with tag tag to process number dest in
communicator comm

o E.g.,MPI_Send(&x, 1, MPI DOUBLE, manager, me,
MPI_COMM WORLD)

Office of

f/‘% U.S. DEPARTMENT OF
@@ ENERGY scionce

%] BERKELEY LAB
Bringing Science Solutions to the World

Message Passing: Receive

e MPI Recv(void *buf, int count,

MPI Datatype datatype, int source, int
tag, MPI Comm comm, MPI Status *status)

e Receive message of length count items and datatype
datatype with tag tag in buffer buf from process
number source in communicator comm, and record
status status

e E.g.MPI Recv(&x, 1, MPI DOUBLE, source,
source, MPI COMM WORLD, é&status)

Office of

f"‘»%"t U.S. DEPARTMENT OF
@Y ENERGY science

%] BERKELEY LAB
Bringing Science Solutions to the World

Message Passing

e WARNING! Both standard send and receive functions are
blocking

e MPI Recv returns only after receive buffer contains
requested message

e MPI Send may or may not block until message received
(usually blocks)

e Must watch out for deadlock

Office of

f/‘% U.S. DEPARTMENT OF
@@ ENERGY scionce

%] BERKELEY LAB
Bringing Science Solutions to the World

Deadlocking Example (Always)

#include <mpi.h>
#include <stdio.h>
int main(int argc, char **argv) {
int me, np, q, sendto;
MPI Status status;
MPI Init(&argc, &argv);
MPI_Comm size (MPI_COMM WORLD,
MPI Comm rank (MPI_COMM WORLD,
if (np%2==1) return O;
if (me%$2==1) {sendto = me-1;}
else {sendto = me+l;}
MPI Recv(&q, 1, MPI_ INT, sendto, sendto, MPI_COMM WORLD, &status);
MPI Send(&me, 1, MPI INT, sendto, me, MPI COMM WORLD) ;
printf (“Sent %d to proc %d, received %d from proc %d\n”, me, sendto, q,
sendto) ;
MPI Finalize();
return O;

» U.S. DEPARTMENT OF Offlce of

BERKELEY LAB & ENERGY scionce

Bringing Science Solutions to the World

Deadlocking Example (Sometimes)

#include <mpi.h>
#include <stdio.h>
int main(int argc, char **argv) {
int me, np, q, sendto;
MPI Status status;
MPI Init(&argc, &argv);
MPI_Comm size (MPI_COMM WORLD,
MPI Comm rank (MPI_COMM WORLD,
if (np%2==1) return O;
if (me%$2==1) {sendto = me-1;}
else {sendto = me+l;}
MPI Send(&me, 1, MPI INT, sendto, me, MPI COMM WORLD) ;
MPI Recv(&q, 1, MPI_ INT, sendto, sendto, MPI_COMM WORLD, &status);
printf (“Sent %d to proc %d, received %d from proc %d\n”, me, sendto, q,
sendto) ;
MPI Finalize();
return O;

» U.S. DEPARTMENT OF Offlce of

BERKELEY LAB & ENERGY scionce

Bringing Science Solutions to the World

Deadlocking Example (Safe)

#include <mpi.h>

#include <stdio.h>

int main(int argc, char **argv) ({
int me, np, q, sendto;
MPI Status status;
MPI Init(&argc, &argv);
MPI Comm size (MPI_COMM WORLD,
MPI_Comm_rank (MPI_COMM WORLD,
if (np%2==1) return O;
if (me%2==1) {sendto = me-1;}

else {sendto = me+l;}
if (me%$2 == 0) {
MPI Send(&me, 1, MPI_INT, sendto, me, MPI_COMM WORLD) ;
MPI Recv(&q, 1, MPI_ INT, sendto, sendto, MPI_COMM WORLD, &status);
} else {
MPI Recv(&q, 1, MPI_ INT, sendto, sendto, MPI_COMM WORLD, &status);
MPI Send(&me, 1, MPI_ INT, sendto, me, MPI COMM WORLD) ;

}

printf (“Sent %d to proc %d, received %d from proc %d\n”, me, sendto, g, sendto);
MPI Finalize();

return O;

BERKELEY LAB

Bringing Science Solutions to the World

Explanation: Always Deadlocking Example

e Logically incorrect

e Deadlock caused by blocking MPI Recvs

e All processes wait for corresponding MPI_Sends to
begin, which never happens

ZZR>, U.S. DEPARTMENT OF Office of
’\‘ ENERGY science

Explanation: Sometimes Deadlocking Example

e Logically correct

e Deadlock could be caused by MPI _Sends competing for
buffer space

e Unsafe because depends on system resources

e Solutions:
o Reorder sends and receives, like safe example, having evens
send first and odds send second
o Use non-blocking sends and receives or other advanced
functions from MPI library (see MPI standard for details)

NERSC 42 B BERKELEY LAB
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

INTERLUDE 1: COMPUTING PI IN PARALLEL

“Pi of Pi” by spellbee2, from
http://www.flickr.com/photos/49825386@N08/7253578340/sizes/l/in/photostream/

Office of

* U.S. DEPARTMENT OF
&) ENERGY scionce

%l BERKELEY LAB
Bringing Science Solutions to the World

http://www.flickr.com/photos/49825386@N08/7253578340/sizes/l/in/photostream/

Interlude 1: Computing & in Parallel

Project Description
Serial Code
Parallelization Strategies
Your Assignment

Project Description

e We want to compute &

e One method: method of
darts®

e Ratio of area of square to
area of inscribed circle
proportional to &

* This is a TERRIBLE way to compute pi! Don’t

- i . “Picycle” by Tang Yau Hoong, from
1
\(;iv(;)tlz;s in real life!!!! (See Appendix 1 for better http://www.flickr.com/photos/tangyauhoong/5

609933651 /sizes/o/in/photostream/
NERSC 45

EEEEEEEEEEEE Offlce of

@al] BERKELEY LAB ENERGY science

http://www.flickr.com/photos/tangyauhoong/5609933651/sizes/o/in/photostream/
http://www.flickr.com/photos/tangyauhoong/5609933651/sizes/o/in/photostream/

Method of Darts

e Imagine dartboard with
circle of radius R inscribed
In square

e Areaofcircle =zF

o Area of square =(2R) =4FR’

o Areaofcircle _7R _=x
Area of square 4R 4

“Dartboard” by AndyRobertsPhotos, from
http://www.flickr.com/photos/aroberts/290
7670014/sizes/o/in/photostream/

Office of
Science

http://www.flickr.com/photos/aroberts/2907670014/sizes/o/in/photostream/
http://www.flickr.com/photos/aroberts/2907670014/sizes/o/in/photostream/

Method of Darts

e Ratio of areas proportional to &

e How to find areas?
o Suppose we threw darts (completely
randomly) at dartboard
o Count # darts landing in circle & total # darts
landing in square
o Ratio of these numbers gives approximation to ratio of areas
o Quality of approximation increases with # darts thrown

S n f,‘*f*\«‘ U.S. DEPARTMENT OF
& BERKELEY LAB @@ ENERGY
Bringing Science Solutions to the World

Office of
Science

Method of Darts

a =4 x # darts inside circle
darts thrown

Method of Darts cake in celebration of Pi
Day 2009, Rebecca Hartman-Baker

Office of
Science

Method of Darts

e Okay, Rebecca, but how in the world do we simulate this
experiment on a computer?

e Decide on length R

e Generate pairs of random numbers (x, y) s.t.

-R<(x,y) <R

e If (x, y) within circle (i.e., if (x’+1°) <R?) add one to tally for
Inside circle
e Lastly, find ratio

Office of

eeeeee

Serial Code (darts.c)

#include "lcgenerator.h"
static long num trials = 1000000;

int main() {
long i;
long Ncirc = 0;
double pi, x, y;
double r = 1.0; // radius of circle
double r2 = r*r;

for (i = 0; i < num_trials; i++) {
x = r*lcgrandom() ;
y = r*lcgrandom() ;
if ((x*x + y*y) <= r2)
Ncirc++;

= 4.0 * ((double)Ncirc)/((double)num trials);

printf("\n For %1d trials, pi = %$f\n", num trials, pi);

return 0;

BERKELEY LAB

Bringing Science Solutions to the World

R U.S. DEPARTMENT OF Offlce of

EN ERGY Science

Serial Code (Icgenerator.h)

// Random number generator -- and not a very good one, either!

static long MULTIPLIER = 1366;
static long ADDEND 150889;
static long PMOD = 714025;
long random last = 0;

// This is not a thread-safe random number generator

double lcgrandom() ({
long random next;
random next = (MULTIPLIER * random last + ADDEND) $PMOD ;
random last = random next;

return ((double)random_next/(double)PMOD);

ZER U.S. DEPARTMENT OF Offlce of

BERKELEY LAB @& ENERGY scionco

Bringing Science Solutions to the World

Serial Code (darts.f) (1)

! First, the pseudorandom number generator

real function lcgrandom()
integer*8, parameter :: MULTIPLIER = 1366
integer*8, parameter :: ADDEND = 150889
integer*8, parameter :: PMOD = 714025
integer*8, save :: random last = 0

integer*8 :: random next = 0

random next = mod((MULTIPLIER * random last + ADDEND), PMOD)
random last = random next

lcgrandom = (1.0*random next)/PMOD

return

end

ZER U.S. DEPARTMENT OF Offlce of

BERKELEY LAB @& ENERGY scionco

Bringing Science Solutions to the World

Serial Code (darts.f) (2)

! Now, we compute pi
program darts

implicit none
integer*8 :: num trials = 1000000,
real :: pi = 0.0, x =0.0, y=0.0, r
real :: r2 = 0.0
real :: lcgrandom
r2 = r*r

do i = 1, num trials

X = r*lcgrandom/()
y = r*lcgrandom()
if ((x*x + y*y) .le. r2) then
Ncirc = Ncirc+l
end if
end do
= 4.0*((1.0*Ncirc)/(1.0*num trials))
print*, ' For ‘', num trials, ' trials, pi

BERKELEY LAB

Bringing Science Solutions to the World

U.S. DEPARTMENT OF Offlce of

! 2 ENERGY Science

Parallelization Strategies

e What tasks independent of each other?
e What tasks must be performed sequentially?
e Using PCAM parallel algorithm design strategy

i BERKELEY LAB

N ¥ = _f \“;
 NERSC | 54 @
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Partition | S

<488 “Decompose problem into fine-grained tasks to maximize
potential parallelism” S |
SJe-Finest grained task: throw of one dart | SHe-
<S8 Each throw independent of all others SHe- ~<is
=i |If we had huge computer, could assign one throw to each
rocessor . . SHe-
b S S = S
S = &=

Communication

“Determine communication pattern among tasks”

e Each processor throws dart(s) then sends results back to
manager process

3, =

0

Office of
Science

v 4

Agglomeration

“Combine into coarser-grained tasks, if necessary, to reduce
communication requirements or other costs”

e To get good value of 1T, must use millions of darts

e We don’t have millions of processors available

e Furthermore, communication between manager and
millions of worker processors would be very expensive

e Solution: divide up number of dart throws evenly between
processors, so each processor does a share of work

0 BERKELEY LAB & ENERGY oreor

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

i3 57

Mapping

“Assign tasks to processors, subject to tradeoff between
communication cost and concurrency”

e Assign role of “manager” to processor 0
e Processor 0 will receive tallies from all the other
processors, and will compute final value of 1

e Every processor, including manager, will perform equal
share of dart throws ‘

Office of
Science

i BERKELEY LAB

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

58

Your Assignment

e Clone the whole assignment (including answers!) to Cori from
the repository with: git clone
https://github.com/hartmanbaker/Developing-wit
h-MPI-and-OpenMP.git

e Copydarts.c/lcgenerator.h ordarts. f (your choice)
from
Developing-with-MPI-and-OpenMP/darts-suite/{c,
fortran}

e Parallelize the code using the 6 basic MP| commands

e Rename your new MPI code darts-mpi.c ordarts-mpi.f

NERSC 59 2l BERKELEY LAB

Office of

fwwﬁ‘t U.S. DEPARTMENT OF
& EN ERGY Science

IV. MPI COLLECTIVES

“The First Tractor” by Vladimir Krikhatsky (socialist realist, 1877-1942). Source:
http://en.wikipedia.org/wiki/File:Wladimir Gawriilowitsch Krikhatzkij - The First Tractor.jpg

60 ©

U.S. DEPARTMENT OF Ofﬂce of

EN ERGY Science

BERKELEY LAB

Bringing Science Solutions to the World

http://en.wikipedia.org/wiki/File:Wladimir_Gawriilowitsch_Krikhatzkij_-_The_First_Tractor.jpg

MPI Collectives

e Communication involving group of processes

e Collective operations
o Broadcast
o Gather
o Scatter
o Reduce
o All-
o Barrier

£ ‘\«‘ EEEEEEEEEEEEEE Offl ce Of

o ENERGY Science

i BERKELEY LAB

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Broadcast

e Perhaps one message needs to be sent from manager to
all worker processes

e Could send individual messages

e Instead, use broadcast — more efficient, faster

¢ int MPI Bcast(void* buffer, int count,
MPI Datatype datatype, int root, MPI Comm
comm)

Office of

fwmﬁ’t U.S. DEPARTMENT OF
& ENERGY Science

NERSC 62 2l BERKELEY LAB

Gather

e All processes need to send same (similar) message to manager

e Could implement with each process calling MPI_Send(...) and
manager looping through MPI_Recv (...)

e Instead, use gather operation — more efficient, faster

e Messages concatenated in rank order

¢ int MPI Gather (void* sendbuf, int sendcount,
MPI Datatype sendtype, void* recvbuf, int
recvcount, MPI Datatype recvtype, int root,
MPI Comm comm)

e Note: recvcount = # items received from each process, not total

< "‘f‘ EEEEEEEEEEEEEE Offlce Of

§ / EN ERGY Science

NER 63 @all BERKELEY LAB

Gather

NERSC 64 2l BERKELEY LAB

Maybe some processes need to send longer messages than
others

Allow varying data count from each process with

MPI Gatherv(..)

int MPI Gatherv(void* sendbuf, int sendcount,
MPI Datatype sendtype, void* recvbuf, int
*recvcounts, int *displs, MPI Datatype
recvtype, int root, MPI Comm comm)

recvcounts is array; entry i in displs array specifies
displacement relative to recvbuf [0] at which to place data
from corresponding process number

Office of

;y““"ﬁ,“‘ U.S. DEPARTMENT OF
@ ENERGY scicnoe

Scatter

e Inverse of gather: split message into NP equal pieces, with ith
segment sent to ith process in group

¢ int MPI Scatter(void* sendbuf, int sendcount,
MPI Datatype sendtype, void* recvbuf, int
recvcount, MPI Datatype recvtype, int root,
MPI Comm comm)

e Send messages of varying sizes across processes in group:
MPI Scatterv(..)

¢ int MPI Scatterv(void* sendbuf, int *sendcounts,
int *displs, MPI datatype sendtype, void¥*
recvbuf, int recvcount, MPI Datatype recvtype,
int root, MPI Comm comm)

NERSC 65 2l BERKELEY LAB

Office of

;y““"ﬁ,“‘ U.S. DEPARTMENT OF
@ ENERGY scicnoe

Reduce

e Perhaps we need to do sum of many subsums owned by
all processors

e Perhaps we need to find maximum value of variable
across all processors

e Perform global reduce operation across all group
members

e int MPI Reduce (void* sendbuf, void*
recvbuf, int count, MPI Datatype datatype,
MPI Op op, int root, MPI Comm comm)

NERSC 66 2l BERKELEY LAB

Office of

f‘w%“‘,, U.S. DEPARTMENT OF
& EN ERGY Science

Reduce: Predefined Operations

MPI MAX
MPI MIN
MPI_SUM
MPI_PROD
MPI LAND
MPI_BAND
MPI_ LOR
MPI_BOR
MPI LXOR
MPI_ BXOR
MPI MAXLOC
MPI MINLOC

Maximum
Minimum
Sum
Product
Logical and
Bitwise and
Logical or
Bitwise or
Logical xor
Bitwise xor
Maximum value & location

Minimum value & location

67

Integer, floating point

Integer, floating point

Integer, floating point, complex
Integer, floating point, complex
Integer, logical

Integer, logical

Integer, logical

Integer, logical

Integer, logical

Integer, logical

*

*

22| BERKELEY LAB

Bringing Science Solutions to the World

SR>, U.S. DEPARTMENT OF

i J ENERGY Science

Reduce: Operations

e MPI MAXLOC and MPI _MINLOC
> Returns {max, min} and rank of first process with that value

o Use with special MPI pair datatype arguments:
m MPI FLOAT INT (float and int)
= MPI DOUBLE_ INT (double and int)
m MPI_LONG_INT (long and int)
m MPI 2INT (pair of int)

o See MPI standard for more details

e User-defined operations
o UseMPI Op create(..) to create new operations
o See MPI standard for more details

Office of
Science

%] BERKELEY LAB
Bringing Science Solutions to the World

All- Operations

e Sometimes, may want to have result of gather, scatter, or
reduce on all processes

e Gather operations
o int MPI Allgather (void* sendbuf, int sendcount,
MPI Datatype sendtype, void* recvbuf, int
recvcount, MPI Datatype recvtype, MPI Comm comm)
o int MPI Allgatherv(void* sendbuf, int sendcount,
MPI Datatype sendtype, void* recvbuf, int
*recvcounts, int *displs, MPI Datatype recvtype,
MPI Comm comm)

NERSC 69 2l BERKELEY LAB

Office of

fwwﬁ‘t U.S. DEPARTMENT OF
&P ENERGY Science

All-to-All Scatter/Gather

e Extension of Allgather in which each process sends
distinct data to each receiver

e Block j from process i is received by process j into ith
block of recvbuf

e int MPI Alltoall (void* sendbuf, int
sendcount, MPI Datatype sendtype, void*
recvbuf, int recvcount, MPI Datatype
recvtype, MPI Comm comm)

e Corresponding MPI_Alltoallv function also available

NERSC 70 2l BERKELEY LAB

Office of

fwmﬁ’t U.S. DEPARTMENT OF
@Y ENERGY science

All-Reduce

e Same as MPI_Reduce except result appears on all
processes

¢ int MPI Allreduce (void* sendbuf, void*
recvbuf, int count, MPI Datatype datatype,
MPI Op op, MPI Comm comm)

Office of

f"‘»%"t U.S. DEPARTMENT OF
& ENERGY Science

%] BERKELEY LAB
Bringing Science Solutions to the World

Barrier

e |n algorithm, may need to synchronize processes
e Barrier blocks until all group members have called it
¢ int MPI Barrier (MPI Comm comm)

\»‘/‘\‘«,‘ EEEEEEEEEEEEEE Ofﬂce Of

'Z / ENERGY Science

%] BERKELEY LAB
Bringing Science Solutions to the World

Bibliography/Resources: MPI/MPI Collectives

e Snir, Marc, Steve W. Otto, Steven Huss-Lederman, David
W. Walker, and Jack Dongarra. (1996) MPI: The
Complete Reference. Cambridge, MA: MIT Press. (also
available at
http://www.netlib.org/utk/papers/mpi-book/mpi-book.html)

e MPICH Documentation
http://www.mpich.org/documentation/quides/

Office of

eeeeee

http://www.netlib.org/utk/papers/mpi-book/mpi-book.html
http://www.mpich.org/documentation/guides/

Bibliography/Resources: MPI/MPI Collectives

e Message Passing Interface (MPI) Tutorial
https://computing.linl.gov/tutorials/mpi/

e MPI Standard at MPI| Forum
o MPI1.1:
http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html
o MPI-2.2:
http://www.mpi-forum.org/docs/mpi22-report/mpi22-report.htm
o MPI 3.1:
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

i BERKELEY LAB

N =
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

https://computing.llnl.gov/tutorials/mpi/
http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html
http://www.mpi-forum.org/docs/mpi22-report/mpi22-report.htm
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

BATAVIA RD

INTERLUDE 2: COMPUTING PI WITH MPI
COLLECTIVES

“Pi-Shaped Power Lines at Fermilab” by Michael Kappel from
http://www.flickr.com/photos/m-i-k-e/4781834200/sizes/l/in/photostream/

NERsC 75 2 BERKELEY LAB

@ ENERGY o2

http://www.flickr.com/photos/m-i-k-e/4781834200/sizes/l/in/photostream/

Interlude 2: Computing & with MPI| Collectives

e |n previous Interlude, you used the 6 basic MPI routines
to develop a parallel program using the Method of Darts
to compute &

e The communications in previous program could be made
more efficient by using collectives

e Your assignment: update your MPI code to use collective
communications

e Rename itdarts-collective.c or
darts-collective.f

%] BERKELEY LAB ‘7
Bringing Science Solutions to the World

NERsC
| BERKELEY LAB ENERGY | e

Outline

1.
1.
V.

V1.

. About OpenMP

OpenMP Directives
Data Scope

Runtime Library Routines and Environment Variables
Using OpenMP
Hybrid Programming

Office of

eeeeee

. ABOUT OPENMP

ZE WY, U-S. DEPARTMENT OF f

u.s: Office o
ENERGY Science

2

BERKELEY LAB
Bringing Science Solutions to the World

About OpenMP

e |ndustry-standard shared memory programming model

Developed in 1997
e OpenMP Architecture Review Board (ARB) determines

additions and updates to standard
e Current standard: 5.0 (November 2018)

%] BERKELEY LAB ‘7
Bringing Science Solutions to the World

Advantages to OpenMP

e Parallelize small parts of application, one at a time
(beginning with most time-critical parts)

e C(Can express simple or complex algorithms

e Code size grows only modestly

e Expression of parallelism flows clearly, so code is easy to
read

e Single source code for OpenMP and non-OpenMP —
non-OpenMP compilers simply ignore OMP directives

Office of

eeeeee

OpenMP Programming Model

e Application Programmer Interface (APl) is combination of
o Directives
o Runtime library routines
o Environment variables
e API falls into three categories
o Expression of parallelism (flow control)
o Data sharing among threads (communication)
o Synchronization (coordination or interaction)

(X Office of
m 82 & BERKELEY LAB @ ENERGY Sl
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Parallelism

e Shared memory, thread-based parallelism
e Explicit parallelism (parallel regions)
e Fork/join model

{ parallel region } { parallel region }

Source: https://computing.linl.gov/tutorials/openMP/

 NERSC. o3

Office of
Science

https://computing.llnl.gov/tutorials/openMP/

THE EPIC NEW YORK TIMES BESTSEuER

ﬂﬂﬁ' M’[I(

5
¢

T
DR

% JUDITH AND GARFIELD REEVES-STEVENS 4

Il. OPENMP DIRECTIVES

Star Trek: Prime Directive by Judith and Garfield Reeves-Stevens, ISBN 0671744666

’

SR, U.S. DEPARTMENT OF f

© ENERGY <0

il BERKELEY LAB
Bringing Science Solutions to the World

. OpenMP Directives

Syntax overview
Parallel

Loop

Sections
Synchronization
Reduction

 NERSC. o5

i BERKELEY LAB

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Office of
Science

Syntax Overview: C/C++

e Basic format
o #pragma omp directive-name [clause] newline

All directives followed by newline

Uses pragma construct (pragma = Greek for “thing done”)

Case sensitive

Directives follow standard rules for C/C++ compiler

directives

e Use curly braces (not on pragma line) to denote scope of
directive

e Long directive lines can be continued by escaping newline

character with \

Office of
Science

%] BERKELEY LAB
Bringing Science Solutions to the World

Syntax Overview: Fortran

e Basic format:

o sentinel directive-name [clause]
e Three accepted sentinels: '$Somp *Somp cSomp
e Some directives paired with end clause

e Fixed-form code:

o Any of three sentinels
beginning at column 1

o Initial directive line has
space/zero in column 6

o Continuation directive line has
non-space/zero in column 6

o Standard rules for fixed-form
line length, spaces, etc. apply

@)
©)

e Free-form code:

! Somp only accepted sentinel
Sentinel can be in any column, but
must be preceded by only white
space and followed by a space

Line to be continued mustend in &
and following line begins with sentinel
Standard rules for free-form line
length, spaces, etc. apply

Bl BERKELEY LAB (@

Office of

v' "“ T OF
&P ENERGY Science

OpenMP Directives: Parallel

e A block of code executed by multiple threads
e Syntax:
#pragma omp parallel private(list) shared(list)
{

/* parallel section */

}

ISomp parallel private(list) &
'Somp shared(list)
! Parallel section
ISomp end parallel

NERSC | 88 3 BERKELEY LAB

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Office of
Science

Simple Example (C/C++)

#include <stdio.h>
#include <omp.h>
int main (int argc, char *argv[]) {
int tid;
printf (“Hello world from threads:\n”);
#pragma omp parallel private (tid)
{

tid = omp get thread num() ;
printf (“<%d>\n”, tid);

}
printf ("I am sequential now\n”) ;
return O;

Office of

i BERKELEY LAB 7 ENERGY Science

e Solutions to the World

Simple Example (Fortran)

program hello
integer tid, omp get thread num
rite(*,*) ‘Hello world from threads:’
ISomp parallel private (tid)
tid = omp get thread num()
rite(*,*) ‘<', tid, >’/
'Somp end parallel
rite(*,*) ‘I am sequential now’
end

i BERKELEY LAB

e Solutions to the World

Office of

7 ENERGY Science

Simple Example: Output

Output 1 Output 2

Hello world from threads: Hello world from threads:
<0> <1>

<1> <2>

<> | Order of execution is scheduled by OS!!!

<3> =

<4> <3>

I am sequential now I am sequential now

Office of
Science

%l BERKELEY LAB
Bringing Science Solutions to the World

OpenMP Directives: Loop

e lterations of the loop following the directive are executed

In parallel

e Syntax (C):
#pragma omp for schedule(type [,chunk]) private(list)\
shared(list) nowailt

{
/* for loop */

Office of
Science

i BERKELEY LAB

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

 NERSC. o2

OpenMP Directives: Loop

e Syntax (Fortran):
!Somp do schedule (type [,chunk]) &
lomp private(list) shared(list)
C do loop goes here

'Somp end do nowait

e type = {static, dynamic, guided, runtime}
e If nowait specified, threads do not synchronize at end of
loop

m 93 @l BERKELEY LAB (@

OpenMP Directives: Loop Scheduling

e Default scheduling determined by implementation
e Static

o |D of thread performing particular iteration is function of iteration
number and number of threads

o Statically assigned at beginning of loop

o Load imbalance may be issue if iterations have different amounts of
work

o Low overhead

e Dynamic

o Assignment of threads determined at runtime (round robin)

o Each thread gets more work after completing current work

o Load balance is possible

o Introduces extra overhead

Office of
Science

OpenMP Directives: Loop Scheduling

Size

static
static
dynamic
dynamic
guided

runtime

< 2 < Z2

N/A
Varies

C

N/P

C
<N/P
Varies

Lowest Simple Static
N/C Low Interleaved
P Medium Simple dynamic
N/C High Dynamic
<N/C Highest Dynamic optimized
Varies Varies Set by environment
variable

Note: N = size of loop, P = number of threads, C = chunk size

Office of
Science

i BERKELEY LAB

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

95

Which Loops are Parallelizable?

Parallelizable Not Parallelizable

e Number of iterations known e Conditional loops (many while
upon entry, and does not loops)
change e lterator loops (e.g., iterating

e Each iteration independent of over std:: list<..>in C++)
all others e lterations dependent upon

e No data dependence each other

e Data dependence

Trick: If a loop can be run backwards and get the same results,
then it is almost always parallelizable!

Office of

* U.S. DEPARTMENT OF
@ ENERGY scicnce

%l BERKELEY LAB
Bringing Science Solutions to the World

Example: Parallelizable?

/* Gaussian Elimination (no pivoting):

for (int i = 0; 1 < N-1; i++) {
for (int j = i; j < N; j++) {
double ratio = A[j][i]/A[i][i];
for (int k = i; k < N; k++) {
A[j]l[k] -= (ratio*A[i][k]);
b[j] -= (ratio*b[i])

i BERKELEY LAB

e Solutions to the World

Office of

, ENERGY Science

Example: Parallelizable?

<, < 5 %
%, {/o /oo {/

K 07 (2

Pivot row/
D column
. Updated

entries

. Unused
entries

K %
z‘/o {{ z'/o 1 {
% 4 %
KN 2

&Rl BERKELEY LAB

- =
Bringing Science Solutions to the World

y U.S. DEPARTMENT OF Offlce of

/ ‘ EN ERGY Science

Example: Parallelizable?

e Outermost Loop (1):

o N-1 iterations
o lterations depend upon each other (values computed at step

1-1 usedin step 1)
e Innerloop (5):

o N-1 iterations (constant for given 1)

o lterations can be performed in any order
e Innermost loop (k):

o N-1 iterations (constant for given 1)

o Iterations can be performed in any order

(X Office of
m 99 &l BERKELEY LAB @ ENERGY sione
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Example: Parallelizable?

/* Gaussian Elimination (no pivoting):

for (int i = 0; 1 < N-1; i++) {
#pragma omp parallel for
for (int j = i; j < N; Jj++) {
double ratio = A[j][i]/A[i][i];
for (int k = 1; k < N; k++) {
A[j]l[k] -= (ratio*A[i] [k])
b[j] -= (ratio*b[i]);

Note: can combine parallel and
for into single pragma

| BERKELEY LAB @ ENERGY <icne

cience Solutions to the World

OpenMP Directives: Sections

e Non-iterative work-sharing construct

e Divide enclosed sections of code among threads
e Section directives nested within sections directive
o

Syntax: C/C++ Fortran
#pragma omp sections 'Somp sections
{
#pragma omp section 'Somp section
/* first section */ c First section
#pragma omp section 'Somp section
/* next section */ c Second section

1Somp end secthps
BERKELEY LAB @ F e

NS R 101 L ENERGY Science

Example: Sections

#include <omp.h> #pragma omp parallel shared(a,b,c,d)
#define N private (i)
{
#pragma omp sections nowait
double a[N], b[N]; {
double c[N], 4d[N]; #pragma omp section
/* Some initializations */ for (i=0; i < N; i++)
for (i=0; i < N; i++) { c[i] = a[i] + b[i];
a[i] =1 * 1.5; #pragma omp section
b[i] = i + 22.35; for (i=0; i < N; i++)
d[i] = a[i] * b[i]~’
} /* end of sections */

} /* end of parallel section */
return O;

}

BERKELEY LAB @ ENERGY i

Science

Bringing Science Solutions to the World

OpenMP Directives: Synchronization

e Sometimes, need to make sure threads execute regions

of code in proper order
o Maybe one part depends on another part being completed
o Maybe only one thread need execute a section of code

e Synchronization directives
o Critical
o Barrier
o Single

OpenMP Directives: Synchronization

e Ciritical

o Specifies section of code that must be executed by only one
thread at a time

o Syntax: C/C++

#pragma omp critical (name)
o Fortran

!Somp critical (name)

!Somp end critical

o Names are global identifiers — critical regions with same name
are treated as same region

Office of

i“ EN ERGY Science

i BERKELEY LAB

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

OpenMP Directives: Synchronization

e Single

(@)

(@)

(@)

Enclosed code is to be executed by only one thread

Useful for thread-unsafe sections of code (e.g., I/O)

Syntax: C/C++ Fortran

#pragma omp single !Somp single
!Somp end single

Office of

a“ EN ERGY Science

i BERKELEY LAB

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

105

OpenMP Directives: Synchronization

e Barrier
o Synchronizes all threads: thread reaches barrier and waits until
all other threads have reached barrier, then resumes executing
code following barrier
o Syntax: C/C++ Fortran

#pragma omp barrier !SOMP barrier

o Sequence of work-sharing and barrier regions encountered must
be the same for every thread

Office of
Science

OpenMP Directives: Reduction

e Reduces list of variables into one, using operator (e.g.,
max, sum, product, etc.)
e Syntax

#pragma omp reduction(op : list)
!Somp reduction(op : list)

o where list is list of variables and op is one of following:
m C/IC++: 4+, -, *, &, ~, |, &&, ||, max, min
m Fortran:+, -, *, .and., .or., .eqv., .neqv., max,
min, iand, ior, ieor

O
> \«‘ EEEEEEEEEEEEEE Offlce Of
m 107 &l BERKELEY LAB @ ENERGY sione
nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

I1l. VARIABLE SCOPE

“M119A2 Scope” by Georgia National Guard, source:
http://www.flickr.com/photos/ganatiquard/5934238668/sizes/|/in/photostream/

y U.S. DEPARTMENT OF Offlce of

&l BERKELEY LAB @@ ENERGY scionee

Bringing Science Solutions to the World

2F 108

http://www.flickr.com/photos/ganatlguard/5934238668/sizes/l/in/photostream/

lll. Variable Scope

e About variable scope
e Scoping clauses
e Common mistakes

109

i BERKELEY LAB

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Office of
Science

About Variable Scope

e Variables can be shared or private within a parallel region

e Shared: one copy, shared between all threads
o Single common memory location, accessible by all threads

e Private: each thread makes its own copy
o Private variables exist only in parallel region

e ‘\«,‘ EEEEEEEEEEEEEE offlce Of

& BERKELEY LAB @ ENERGY Sl
Bringing Science Solutions to the World

NEF 110

About Variable Scope

e By default, all variables shared except

o Index values of parallel region loop — private by default
Local variables and value parameters within subroutines called

within parallel region — private
o Variables declared within lexical extent of parallel region —

private
e Variable scope is the most common source of errors in

OpenMP codes

o Correctly determining variable scope is key to correctness and
performance of your code

(@)

Office of
Science

%] BERKELEY LAB
Bringing Science Solutions to the World

Variable Scoping Clauses: Shared

e Shared variables: shared (list)
o By default, all variables shared unless otherwise specified
o All threads access this variable in same location in memory
o Race conditions can occur if access is not carefully controlled

Office of
Science

i BERKELEY L